
Mobile Application
Programming
OpenGL ES Introduction

OpenGL ES
C-Based Performance-Oriented Graphics Library

Wrapper libraries provided for Swift, C#, etc.

Produces 2D images from 2D or 3D geometric data

Mobile version of OpenGL

Includes nearly all OpenGL functionality

Removes seldom-used or legacy features

Used by non-mobile platforms also (eg. Playstation 4)

Hardware Acceleration

Hardware Acceleration

Hardware Acceleration
2

Processors

Hardware Acceleration

CPU

SRAM

GPU

GPU

GPU

GPU

GPU
Shared
Logic

2
Processors 128

Processors!

Apple A7

Image Source: Chipworks

Hardware Acceleration
Apple A7 Apple A6

Image Source: Chipworks

1.4 GHz

Dual-Core

1.3 GHz
Cyclone Swift

 PowerVR SGX543 (3x)

Dual-Core

ARM v7ARM v8-A

 PowerVR G6430 (4x)

L1 32+32KBL1 64+64KB
L2 1MB L2 1MB
L3 4MB L3 N/A

64-bit 32-bit

Comparison of Apple GPUs

www.anantech.com/show/7335/the-iphone-5s-review/7

OpenGL Environment
UIWindow

Root VC - GLKViewController

GLKView

Vertex Shader

Fragment Shader

Program

Uniform Variables

Attribute Arrays

 Window
 ↳GLKView
 ↳GLES20
 ↳Shaders

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Barycentric Coordinates

A

B
C

λ1 λ2 λ3+ + = 1
and

0 ≤ λx ≤ 1

P

P λ1 λ2 λ3+ += A B C

Primitives

Vertex Shader

Takes in vertex data and modifies it before using it to
draw primitives (particularly triangles)

Each vertex is processed separately from others
(in parallel)

Allows you to position and orient objects in the scene

E.g. Load a monster mesh in spread-eagle stance,
move him in the world, and position his arms, legs,
feet, so he is running

 attribute vec2 position;

 uniform vec2 translate;

 void main()
 {
 gl_Position = vec4(position.x + translate.x, position.y + translate.y, 0.0, 1.0);
 }

Vertex Shader

Data read from
Scene and OBJ files

OpenGL ES
Primitive

Processing
Vertex
Shader

OpenGL ES
Rasterizer

Fragment
Shader

OpenGL ES
Fragment

Processing

Fragments resulting
from rasterization Frame Buffer

Rasterization

Rasterization

Fragment Shader

Run once for each fragment (or pixel) that a triangle
covers in the output pixel buffer to decide its color

Each fragment is processed separately from others
(again, in parallel)

Allows you to color pixels to achieve effects (shading)

E.g. Draw your running monster, but cover him in
green skin. Also make it look like the sun is shining
on him

 void main()
 {
 gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);
 }

Fragment Shader

OpenGL Debugging

OpenGL Debugging

Primitive
Processing

Vertex
Shader Rasterizer

Fragment
Shader

Fragment
Processing

A Little Math - Vectors

Vectors

Addition & Subtraction

Scalar Multiplication

Dot & Cross Product

Magnitude & Normalization

A Little Math - Matrices

Matrices

Concatenation

Vector Multiplication

Orthographic Transform

Perspective Transform

Viewport Transform

